import Attributes from './attributes' import Point from './point' import { Bezier } from 'bezier-js' import { linesIntersect, lineIntersectsCurve, curvesIntersect, pointOnLine, pointOnCurve, curveEdge, round, } from './utils' function Path(debug = false) { this.render = true this.topLeft = false this.bottomRight = false this.attributes = new Attributes() this.ops = [] Object.defineProperty(this, 'debug', { value: debug, configurable: true }) } /** Adds the raise method for a path not created through the proxy **/ Path.prototype.withRaise = function (raise = false) { if (raise) Object.defineProperty(this, 'raise', { value: raise }) return this } /** Chainable way to set the render property */ Path.prototype.setRender = function (render = true) { if (render) this.render = true else this.render = false return this } /** Adds a move operation to Point to */ Path.prototype.move = function (to) { if (to instanceof Point !== true) this.raise.warning('Called `Path.rotate(to)` but `to` is not a `Point` object') this.ops.push({ type: 'move', to }) return this } /** Adds a line operation to Point to */ Path.prototype.line = function (to) { if (to instanceof Point !== true) this.raise.warning('Called `Path.line(to)` but `to` is not a `Point` object') this.ops.push({ type: 'line', to }) return this } /** Adds a curve operation via cp1 & cp2 to Point to */ Path.prototype.curve = function (cp1, cp2, to) { if (to instanceof Point !== true) this.raise.warning('Called `Path.curve(cp1, cp2, to)` but `to` is not a `Point` object') if (cp1 instanceof Point !== true) this.raise.warning('Called `Path.curve(cp1, cp2, to)` but `cp1` is not a `Point` object') if (cp2 instanceof Point !== true) this.raise.warning('Called `Path.curve(cp1, cp2, to)` but `cp2` is not a `Point` object') this.ops.push({ type: 'curve', cp1, cp2, to }) return this } /** Adds a curve operation without cp1 via cp2 to Point to */ Path.prototype._curve = function (cp2, to) { if (to instanceof Point !== true) this.raise.warning('Called `Path._curve(cp2, to)` but `to` is not a `Point` object') if (cp2 instanceof Point !== true) this.raise.warning('Called `Path._curve(cp2, to)` but `cp2` is not a `Point` object') let cp1 = this.ops.slice(-1).pop().to this.ops.push({ type: 'curve', cp1, cp2, to }) return this } /** Adds a curve operation via cp1 with no cp2 to Point to */ Path.prototype.curve_ = function (cp1, to) { if (to instanceof Point !== true) this.raise.warning('Called `Path.curve_(cp1, to)` but `to` is not a `Point` object') if (cp1 instanceof Point !== true) this.raise.warning('Called `Path.curve_(cp1, to)` but `cp2` is not a `Point` object') let cp2 = to.copy() this.ops.push({ type: 'curve', cp1, cp2, to }) return this } /** Adds a close operation */ Path.prototype.close = function () { this.ops.push({ type: 'close' }) return this } /** Adds a noop operation */ Path.prototype.noop = function (id = false) { this.ops.push({ type: 'noop', id }) return this } /** Replace a noop operation with the ops from path */ Path.prototype.insop = function (noopId, path) { if (!noopId) this.raise.warning('Called `Path.insop(noopId, path)` but `noopId` is undefined or false') if (path instanceof Path !== true) this.raise.warning('Called `Path.insop(noopId, path) but `path` is not a `Path` object') let newPath = this.clone() for (let i in newPath.ops) { if (newPath.ops[i].type === 'noop' && newPath.ops[i].id === noopId) { newPath.ops = newPath.ops .slice(0, i) .concat(path.ops) .concat(newPath.ops.slice(Number(i) + 1)) } } return newPath } /** Adds an attribute. This is here to make this call chainable in assignment */ Path.prototype.attr = function (name, value, overwrite = false) { if (!name) this.raise.warning( 'Called `Path.attr(name, value, overwrite=false)` but `name` is undefined or false' ) if (typeof value === 'undefined') this.raise.warning( 'Called `Path.attr(name, value, overwrite=false)` but `value` is undefined' ) if (overwrite) this.raise.debug( `Overwriting \`Path.attribute.${name}\` with ${value} (was: ${this.attributes.get(name)})` ) if (overwrite) this.attributes.set(name, value) else this.attributes.add(name, value) return this } /** Returns SVG pathstring for this path */ Path.prototype.asPathstring = function () { let d = '' for (let op of this.ops) { switch (op.type) { case 'move': d += `M ${round(op.to.x)},${round(op.to.y)}` break case 'line': d += ` L ${round(op.to.x)},${round(op.to.y)}` break case 'curve': d += ` C ${round(op.cp1.x)},${round(op.cp1.y)} ${round(op.cp2.x)},${round( op.cp2.y )} ${round(op.to.x)},${round(op.to.y)}` break case 'close': d += ' z' break } } return d } /** Returns offset of this path as a new path */ Path.prototype.offset = function (distance) { if (typeof distance !== 'number') this.raise.error('Called `Path.offset(distance)` but `distance` is not a number') return pathOffset(this, distance, this.raise) } /** Returns the length of this path */ Path.prototype.length = function () { let current, start let length = 0 for (let i in this.ops) { let op = this.ops[i] if (op.type === 'move') { start = op.to } else if (op.type === 'line') { length += current.dist(op.to) } else if (op.type === 'curve') { length += new Bezier( { x: current.x, y: current.y }, { x: op.cp1.x, y: op.cp1.y }, { x: op.cp2.x, y: op.cp2.y }, { x: op.to.x, y: op.to.y } ).length() } else if (op.type === 'close') { length += current.dist(start) } if (op.to) current = op.to } return length } /** Returns the startpoint of the path */ Path.prototype.start = function () { if (this.ops.length < 1 || typeof this.ops[0].to === 'undefined') this.raise.error('Called `Path.start()` but this path has no drawing operations') return this.ops[0].to } /** Returns the endpoint of the path */ Path.prototype.end = function () { if (this.ops.length < 1) this.raise.error('Called `Path.end()` but this path has no drawing operations') let op = this.ops[this.ops.length - 1] if (op.type === 'close') return this.start() else return op.to } /** Finds the bounding box of a path */ Path.prototype.boundary = function () { if (this.topLeft) return this // Cached let current let topLeft = new Point(Infinity, Infinity) let bottomRight = new Point(-Infinity, -Infinity) let edges = [] for (let i in this.ops) { let op = this.ops[i] if (op.type === 'move' || op.type === 'line') { if (op.to.x < topLeft.x) { topLeft.x = op.to.x edges['leftOp'] = i } if (op.to.y < topLeft.y) { topLeft.y = op.to.y edges['topOp'] = i } if (op.to.x > bottomRight.x) { bottomRight.x = op.to.x edges['rightOp'] = i } if (op.to.y > bottomRight.y) { bottomRight.y = op.to.y edges['bottomOp'] = i } } else if (op.type === 'curve') { let bb = new Bezier( { x: current.x, y: current.y }, { x: op.cp1.x, y: op.cp1.y }, { x: op.cp2.x, y: op.cp2.y }, { x: op.to.x, y: op.to.y } ).bbox() if (bb.x.min < topLeft.x) { topLeft.x = bb.x.min edges['leftOp'] = i } if (bb.y.min < topLeft.y) { topLeft.y = bb.y.min edges['topOp'] = i } if (bb.x.max > bottomRight.x) { bottomRight.x = bb.x.max edges['rightOp'] = i } if (bb.y.max > bottomRight.y) { bottomRight.y = bb.y.max edges['bottomOp'] = i } } if (op.to) current = op.to } this.topLeft = topLeft this.bottomRight = bottomRight for (let side of ['top', 'left', 'bottom', 'right']) { let s = side + 'Op' this[s] = this.ops[edges[s]] this[s].from = this[s].type === 'move' ? this[s].to : this.ops[edges[s] - 1].to } return this } /** Returns a deep copy of this */ Path.prototype.clone = function () { let clone = new Path(this.debug).withRaise(this.raise).setRender(this.render) if (this.topLeft) clone.topLeft = this.topLeft.clone() else clone.topLeft = false if (this.bottomRight) clone.bottomRight = this.bottomRight.clone() else clone.bottomRight = false clone.attributes = this.attributes.clone() clone.ops = [] for (let i in this.ops) { let op = this.ops[i] clone.ops[i] = { type: op.type } if (op.type === 'move' || op.type === 'line') { clone.ops[i].to = op.to.clone() } else if (op.type === 'curve') { clone.ops[i].to = op.to.clone() clone.ops[i].cp1 = op.cp1.clone() clone.ops[i].cp2 = op.cp2.clone() } else if (op.type === 'noop') { clone.ops[i].id = op.id } } return clone } /** Joins this with that path, closes them if wanted */ Path.prototype.join = function (that, closed = false) { if (that instanceof Path !== true) this.raise.error('Called `Path.join(that)` but `that` is not a `Path` object') return joinPaths([this, that], closed, this.raise) } /** Offsets a path by distance */ function pathOffset(path, distance, raise) { let offset = [] let current let start = false let closed = false for (let i in path.ops) { let op = path.ops[i] if (op.type === 'line') { let segment = offsetLine(current, op.to, distance, path.debug, path.raise) if (segment) offset.push(segment) } else if (op.type === 'curve') { // We need to avoid a control point sitting on top of start or end // because that will break the offset in bezier-js let cp1, cp2 if (current.sitsRoughlyOn(op.cp1)) { cp1 = new Path(path.debug).withRaise(path.raise).move(current).curve(op.cp1, op.cp2, op.to) cp1 = cp1.shiftAlong(cp1.length() > 2 ? 2 : cp1.length() / 10) } else cp1 = op.cp1 if (op.cp2.sitsRoughlyOn(op.to)) { cp2 = new Path(path.debug).withRaise(path.raise).move(op.to).curve(op.cp2, op.cp1, current) cp2 = cp2.shiftAlong(cp2.length() > 2 ? 2 : cp2.length() / 10) } else cp2 = op.cp2 let b = new Bezier( { x: current.x, y: current.y }, { x: cp1.x, y: cp1.y }, { x: cp2.x, y: cp2.y }, { x: op.to.x, y: op.to.y } ) for (let bezier of b.offset(distance)) offset.push(asPath(bezier, path.debug, path.raise)) } else if (op.type === 'close') closed = true if (op.to) current = op.to if (!start) start = current } return joinPaths(offset, closed, raise) } /** Offsets a line by distance */ function offsetLine(from, to, distance, debug = false, raise = false) { if (from.x === to.x && from.y === to.y) return false let angle = from.angle(to) - 90 return new Path(debug) .withRaise(raise) .move(from.shift(angle, distance)) .line(to.shift(angle, distance)) } /** Converts a bezier-js instance to a path */ function asPath(bezier, debug = false, raise = false) { return new Path(debug) .withRaise(raise) .move(new Point(bezier.points[0].x, bezier.points[0].y)) .curve( new Point(bezier.points[1].x, bezier.points[1].y), new Point(bezier.points[2].x, bezier.points[2].y), new Point(bezier.points[3].x, bezier.points[3].y) ) } /** Joins path segments together into one path */ function joinPaths(paths, closed = false, raise = false) { let joint = new Path(paths[0].debug).withRaise(paths[0].raise).move(paths[0].ops[0].to) let current for (let p of paths) { for (let op of p.ops) { if (op.type === 'curve') { joint.curve(op.cp1, op.cp2, op.to) } else if (op.type !== 'close') { // We're using sitsRoughlyOn here to avoid miniscule line segments if (current && !op.to.sitsRoughlyOn(current)) joint.line(op.to) } else { let err = 'Cannot join a closed path with another' joint.raise.error(err) throw new Error(err) } if (op.to) current = op.to } } if (closed) joint.close() return joint } /** Returns a point that lies at distance along this */ Path.prototype.shiftAlong = function (distance, stepsPerMm = 25) { if (typeof distance !== 'number') this.raise.error('Called `Path.shiftAlong(distance)` but `distance` is not a number') let len = 0 let current for (let i in this.ops) { let op = this.ops[i] if (op.type === 'line') { let thisLen = op.to.dist(current) if (Math.abs(len + thisLen - distance) < 0.1) return op.to if (len + thisLen > distance) return current.shiftTowards(op.to, distance - len) len += thisLen } else if (op.type === 'curve') { let bezier = new Bezier( { x: current.x, y: current.y }, { x: op.cp1.x, y: op.cp1.y }, { x: op.cp2.x, y: op.cp2.y }, { x: op.to.x, y: op.to.y } ) let thisLen = bezier.length() if (Math.abs(len + thisLen - distance) < 0.1) return op.to if (len + thisLen > distance) return shiftAlongBezier(distance - len, bezier, thisLen * stepsPerMm) len += thisLen } current = op.to } this.raise.error( `Called \`Path.shiftAlong(distance)\` with a \`distance\` of \`${distance}\` but \`Path.length()\` is only \`${this.length()}\`` ) } /** Returns a point that lies at fraction along this */ Path.prototype.shiftFractionAlong = function (fraction, stepsPerMm = 25) { if (typeof fraction !== 'number') this.raise.error('Called `Path.shiftFractionAlong(fraction)` but `fraction` is not a number') return this.shiftAlong(this.length() * fraction, stepsPerMm) } /** Returns a point that lies at distance along bezier */ function shiftAlongBezier(distance, bezier, steps = 100) { let previous, next, t, thisLen let len = 0 for (let i = 0; i <= steps; i++) { t = i / steps next = bezier.get(t) next = new Point(next.x, next.y) if (i > 0) { thisLen = next.dist(previous) if (len + thisLen > distance) return next else len += thisLen } previous = next } } /** Returns a point at the top edge of a bounding box of this */ Path.prototype.bbox = function () { let bbs = [] let current for (let i in this.ops) { let op = this.ops[i] if (op.type === 'line') { bbs.push(lineBoundingBox({ from: current, to: op.to })) } else if (op.type === 'curve') { bbs.push( curveBoundingBox( new Bezier( { x: current.x, y: current.y }, { x: op.cp1.x, y: op.cp1.y }, { x: op.cp2.x, y: op.cp2.y }, { x: op.to.x, y: op.to.y } ) ) ) } if (op.to) current = op.to } return bbbbox(bbs) } function lineBoundingBox(line) { let from = line.from let to = line.to if (from.x === to.x) { if (from.y < to.y) return { topLeft: from, bottomRight: to } else return { topLeft: to, bottomRight: from } } else if (from.y === to.y) { if (from.x < to.x) return { topLeft: from, bottomRight: to } else return { topLeft: to, bottomRight: from } } else if (from.x < to.x) { if (from.y < to.y) return { topLeft: from, bottomRight: to } else return { topLeft: new Point(from.x, to.y), bottomRight: new Point(to.x, from.y), } } else if (from.x > to.x) { if (from.y < to.y) return { topLeft: new Point(to.x, from.y), bottomRight: new Point(from.x, to.y), } else return { topLeft: new Point(to.x, to.y), bottomRight: new Point(from.x, from.y), } } } function curveBoundingBox(curve) { let bb = curve.bbox() return { topLeft: new Point(bb.x.min, bb.y.min), bottomRight: new Point(bb.x.max, bb.y.max), } } function bbbbox(boxes) { let minX = Infinity let maxX = -Infinity let minY = Infinity let maxY = -Infinity for (let box of boxes) { if (box.topLeft.x < minX) minX = box.topLeft.x if (box.topLeft.y < minY) minY = box.topLeft.y if (box.bottomRight.x > maxX) maxX = box.bottomRight.x if (box.bottomRight.y > maxY) maxY = box.bottomRight.y } return { topLeft: new Point(minX, minY), bottomRight: new Point(maxX, maxY) } } /** Returns a reversed version of this */ Path.prototype.reverse = function () { let sections = [] let current let closed = false for (let i in this.ops) { let op = this.ops[i] if (op.type === 'line') { if (!op.to.sitsOn(current)) sections.push(new Path(this.debug).withRaise(this.raise).move(op.to).line(current)) } else if (op.type === 'curve') { sections.push( new Path(this.debug).withRaise(this.raise).move(op.to).curve(op.cp2, op.cp1, current) ) } else if (op.type === 'close') { closed = true } if (op.to) current = op.to } let rev = new Path(this.debug).withRaise(this.raise).move(current) for (let section of sections.reverse()) rev.ops.push(section.ops[1]) if (closed) rev.close() return rev } /** Returns the point at an edge of this path */ Path.prototype.edge = function (side) { this.boundary() if (side === 'topLeft') return this.topLeft else if (side === 'bottomRight') return this.bottomRight else if (side === 'topRight') return new Point(this.bottomRight.x, this.topLeft.y) else if (side === 'bottomLeft') return new Point(this.topLeft.x, this.bottomRight.y) else { let s = side + 'Op' if (this[s].type === 'move') return this[s].to else if (this[s].type === 'line') { if (side === 'top') { if (this.topOp.to.y < this.topOp.from.y) return this.topOp.to else return this.topOp.from } else if (side === 'left') { if (this.leftOp.to.x < this.leftOp.from.x) return this.leftOp.to else return this.leftOp.from } else if (side === 'bottom') { if (this.bottomOp.to.y > this.bottomOp.from.y) return this.bottomOp.to else return this.bottomOp.from } else if (side === 'right') { if (this.rightOp.to.x > this.rightOp.from.x) return this.rightOp.to else return this.rightOp.from } } else if (this[s].type === 'curve') { let curve = edgeCurveAsBezier(this[s]) return curveEdge(curve, side) } } this.raise.error(`Unable to find \`Path.edge(side)\` for side ${side}`) } function edgeCurveAsBezier(op) { return new Bezier( { x: op.from.x, y: op.from.y }, { x: op.cp1.x, y: op.cp1.y }, { x: op.cp2.x, y: op.cp2.y }, { x: op.to.x, y: op.to.y } ) } /** Divides a path into atomic paths */ Path.prototype.divide = function () { let paths = [] let current, start for (let i in this.ops) { let op = this.ops[i] if (op.type === 'move') { start = op.to } else if (op.type === 'line') { if (!op.to.sitsRoughlyOn(current)) paths.push(new Path(this.debug).withRaise(this.raise).move(current).line(op.to)) } else if (op.type === 'curve') { paths.push( new Path(this.debug).withRaise(this.raise).move(current).curve(op.cp1, op.cp2, op.to) ) } else if (op.type === 'close') { paths.push(new Path(this.debug).withRaise(this.raise).move(current).line(start)) } if (op.to) current = op.to } return paths } /** Finds intersections between this path and an X value */ Path.prototype.intersectsX = function (x) { if (typeof x !== 'number') this.raise.error('Called `Path.intersectsX(x)` but `x` is not a number') return this.intersectsAxis(x, 'x') } /** Finds intersections between this path and an Y value */ Path.prototype.intersectsY = function (y) { if (typeof y !== 'number') this.raise.error('Called `Path.intersectsX(y)` but `y` is not a number') return this.intersectsAxis(y, 'y') } /** Finds intersections between this path and a X or Y value */ Path.prototype.intersectsAxis = function (val = false, mode) { let intersections = [] let lineStart = mode === 'x' ? new Point(val, -100000) : new Point(-10000, val) let lineEnd = mode === 'x' ? new Point(val, 100000) : new Point(100000, val) for (let path of this.divide()) { if (path.ops[1].type === 'line') { addIntersectionsToArray( linesIntersect(path.ops[0].to, path.ops[1].to, lineStart, lineEnd), intersections ) } else if (path.ops[1].type === 'curve') { addIntersectionsToArray( lineIntersectsCurve( lineStart, lineEnd, path.ops[0].to, path.ops[1].cp1, path.ops[1].cp2, path.ops[1].to ), intersections ) } } return intersections } /** Finds intersections between this path and another path */ Path.prototype.intersects = function (path) { if (this === path) this.raise.error('You called Path.intersects(path)` but `path` and `this` are the same object') let intersections = [] for (let pathA of this.divide()) { for (let pathB of path.divide()) { if (pathA.ops[1].type === 'line') { if (pathB.ops[1].type === 'line') { addIntersectionsToArray( linesIntersect(pathA.ops[0].to, pathA.ops[1].to, pathB.ops[0].to, pathB.ops[1].to), intersections ) } else if (pathB.ops[1].type === 'curve') { addIntersectionsToArray( lineIntersectsCurve( pathA.ops[0].to, pathA.ops[1].to, pathB.ops[0].to, pathB.ops[1].cp1, pathB.ops[1].cp2, pathB.ops[1].to ), intersections ) } } else if (pathA.ops[1].type === 'curve') { if (pathB.ops[1].type === 'line') { addIntersectionsToArray( lineIntersectsCurve( pathB.ops[0].to, pathB.ops[1].to, pathA.ops[0].to, pathA.ops[1].cp1, pathA.ops[1].cp2, pathA.ops[1].to ), intersections ) } else if (pathB.ops[1].type === 'curve') { addIntersectionsToArray( curvesIntersect( pathA.ops[0].to, pathA.ops[1].cp1, pathA.ops[1].cp2, pathA.ops[1].to, pathB.ops[0].to, pathB.ops[1].cp1, pathB.ops[1].cp2, pathB.ops[1].to ), intersections ) } } } } return intersections } function addIntersectionsToArray(candidates, intersections) { if (!candidates) return if (typeof candidates === 'object') { if (typeof candidates.x === 'number') intersections.push(candidates) else { for (let candidate of candidates) intersections.push(candidate) } } } /** Splits path on point, and retuns both halves */ Path.prototype.split = function (point) { if (point instanceof Point !== true) this.raise.error('Called `Path.split(point)` but `point` is not a `Point` object') let divided = this.divide() let firstHalf = false let secondHalf = false for (let pi = 0; pi < divided.length; pi++) { let path = divided[pi] if (path.ops[1].type === 'line') { if (pointOnLine(path.ops[0].to, path.ops[1].to, point)) { firstHalf = divided.slice(0, pi) firstHalf.push(new Path(this.debug).withRaise(this.raise).move(path.ops[0].to).line(point)) pi++ secondHalf = divided.slice(pi) secondHalf.unshift( new Path(this.debug).withRaise(this.raise).move(point).line(path.ops[1].to) ) } } else if (path.ops[1].type === 'curve') { let t = pointOnCurve(path.ops[0].to, path.ops[1].cp1, path.ops[1].cp2, path.ops[1].to, point) if (t !== false) { let curve = new Bezier( { x: path.ops[0].to.x, y: path.ops[0].to.y }, { x: path.ops[1].cp1.x, y: path.ops[1].cp1.y }, { x: path.ops[1].cp2.x, y: path.ops[1].cp2.y }, { x: path.ops[1].to.x, y: path.ops[1].to.y } ) let split = curve.split(t) firstHalf = divided.slice(0, pi) firstHalf.push( new Path(this.debug) .withRaise(this.raise) .move(new Point(split.left.points[0].x, split.left.points[0].y)) .curve( new Point(split.left.points[1].x, split.left.points[1].y), new Point(split.left.points[2].x, split.left.points[2].y), new Point(split.left.points[3].x, split.left.points[3].y) ) ) pi++ secondHalf = divided.slice(pi) secondHalf.unshift( new Path(this.debug) .withRaise(this.raise) .move(new Point(split.right.points[0].x, split.right.points[0].y)) .curve( new Point(split.right.points[1].x, split.right.points[1].y), new Point(split.right.points[2].x, split.right.points[2].y), new Point(split.right.points[3].x, split.right.points[3].y) ) ) } } } if (firstHalf) firstHalf = joinPaths(firstHalf, false, this.raise) if (secondHalf) secondHalf = joinPaths(secondHalf, false, this.raise) return [firstHalf, secondHalf] } /** Removes self-intersections (overlap) from the path */ Path.prototype.trim = function () { let chunks = this.divide() for (let i = 0; i < chunks.length; i++) { let firstCandidate = parseInt(i) + 2 let lastCandidate = parseInt(chunks.length) - 1 for (let j = firstCandidate; j < lastCandidate; j++) { let intersections = chunks[i].intersects(chunks[j]) if (intersections.length > 0) { let intersection = intersections.pop() let trimmedStart = chunks.slice(0, i) let trimmedEnd = chunks.slice(parseInt(j) + 1) let glue = new Path(this.debug).withRaise(this.raise) let first = true for (let k of [i, j]) { let ops = chunks[k].ops if (ops[1].type === 'line') { glue.line(intersection) } else if (ops[1].type === 'curve') { // handle curve let curve = new Bezier( { x: ops[0].to.x, y: ops[0].to.y }, { x: ops[1].cp1.x, y: ops[1].cp1.y }, { x: ops[1].cp2.x, y: ops[1].cp2.y }, { x: ops[1].to.x, y: ops[1].to.y } ) let t = pointOnCurve(ops[0].to, ops[1].cp1, ops[1].cp2, ops[1].to, intersection) let split = curve.split(t) let side if (first) side = split.left else side = split.right glue.curve( new Point(side.points[1].x, side.points[1].y), new Point(side.points[2].x, side.points[2].y), new Point(side.points[3].x, side.points[3].y) ) } first = false } let joint if (trimmedStart.length > 0) joint = joinPaths(trimmedStart, false, this.raise).join(glue) else joint = glue if (trimmedEnd.length > 0) joint = joint.join(joinPaths(trimmedEnd, false, this.raise)) return joint.trim() } } } return this } /** Applies a path translate transform */ Path.prototype.translate = function (x, y) { if (this.debug) { if (typeof x !== 'number') this.raise.warning('Called `Path.translate(x, y)` but `x` is not a number') if (typeof y !== 'number') this.raise.warning('Called `Path.translate(x, y)` but `y` is not a number') } let clone = this.clone() for (let op of clone.ops) { if (op.type !== 'close') { op.to = op.to.translate(x, y) } if (op.type === 'curve') { op.cp1 = op.cp1.translate(x, y) op.cp2 = op.cp2.translate(x, y) } } return clone } export default Path