Fix and improve path intersection methods
- Add path.intersectsBeam() method - Add utils.beamIntersectsLine() method - Simplify calculation and improve precision on beam intersections - Document return types properly - beamIntersectsCurve now uses the proper function from Bezier library instead of emulating it by constructing a huge line - docs: path.intersect... methods never return false, they simply return an empty array in case of no intersection
This commit is contained in:
parent
adf83eda8c
commit
4b83212f41
10 changed files with 262 additions and 39 deletions
|
@ -12,6 +12,8 @@ import {
|
|||
round,
|
||||
__addNonEnumProp,
|
||||
__asNumber,
|
||||
beamIntersectsCurve,
|
||||
beamIntersectsLine,
|
||||
} from './utils.mjs'
|
||||
|
||||
//////////////////////////////////////////////
|
||||
|
@ -540,6 +542,38 @@ Path.prototype.intersects = function (path) {
|
|||
return intersections
|
||||
}
|
||||
|
||||
/**
|
||||
* Finds intersections between this Path and an endless line (beam) defined by two points
|
||||
*
|
||||
* @param {Point} start - The first point on the beam
|
||||
* @param {Point} end - The second point on the beam
|
||||
* @return {Array} intersections - An array of Point objects where the path intersects the beam
|
||||
*/
|
||||
Path.prototype.intersectsBeam = function (start, end) {
|
||||
let intersections = []
|
||||
for (let pathA of this.divide()) {
|
||||
if (pathA.ops[1].type === 'line') {
|
||||
__addIntersectionsToArray(
|
||||
beamIntersectsLine(start, end, pathA.ops[0].to, pathA.ops[1].to),
|
||||
intersections
|
||||
)
|
||||
} else if (pathA.ops[1].type === 'curve') {
|
||||
__addIntersectionsToArray(
|
||||
beamIntersectsCurve(
|
||||
start,
|
||||
end,
|
||||
pathA.ops[0].to,
|
||||
pathA.ops[1].cp1,
|
||||
pathA.ops[1].cp2,
|
||||
pathA.ops[1].to
|
||||
),
|
||||
intersections
|
||||
)
|
||||
}
|
||||
}
|
||||
return intersections
|
||||
}
|
||||
|
||||
/**
|
||||
* Finds intersections between this Path and an X value
|
||||
*
|
||||
|
@ -1319,7 +1353,7 @@ export function pathsProxy(paths, log) {
|
|||
*
|
||||
* @private
|
||||
* @param {Array|Object|false} candidates - One Point or an array of Points to check for intersection
|
||||
* @param {Path} path - The Path instance to add as intersection if it has coordinates
|
||||
* @param {Path} intersections - The Path instance to add as intersection if it has coordinates
|
||||
* @return {Array} intersections - An array of Point objects where the paths intersect
|
||||
*/
|
||||
function __addIntersectionsToArray(candidates, intersections) {
|
||||
|
|
|
@ -94,32 +94,60 @@ export function beamIntersectsY(from, to, y) {
|
|||
* @param {Point} a2 - Point 2 of line A
|
||||
* @param {Point} b1 - Point 1 of line B
|
||||
* @param {Point} b2 - Point 2 of line B
|
||||
* @return {Point} intersections - The Point at the intersection
|
||||
* @return {Point|false} intersections - The Point at the intersection or `false` if the lines are parallel
|
||||
*/
|
||||
export function beamsIntersect(a1, a2, b1, b2) {
|
||||
let slopeA = a1.slope(a2)
|
||||
let slopeB = b1.slope(b2)
|
||||
if (slopeA === slopeB) return false // Parallel lines
|
||||
const intersection = beamIntersection(a1, a2, b1, b2)
|
||||
if (!intersection) return false
|
||||
return intersection.p
|
||||
}
|
||||
|
||||
// Check for vertical line A
|
||||
if (Math.round(a1.x * 10000) === Math.round(a2.x * 10000))
|
||||
return new Point(a1.x, slopeB * a1.x + (b1.y - slopeB * b1.x))
|
||||
// Check for vertical line B
|
||||
else if (Math.round(b1.x * 10000) === Math.round(b2.x * 10000))
|
||||
return new Point(b1.x, slopeA * b1.x + (a1.y - slopeA * a1.x))
|
||||
else {
|
||||
// Swap points if line A or B goes from right to left
|
||||
if (a1.x > a2.x) a1 = a2.copy()
|
||||
if (b1.x > b2.x) b1 = b2.copy()
|
||||
// Find y intercept
|
||||
let iA = a1.y - slopeA * a1.x
|
||||
let iB = b1.y - slopeB * b1.x
|
||||
/**
|
||||
* Finds the intersection of two endless lines (beams)
|
||||
*
|
||||
* @param {Point} a1 - Point 1 of line A
|
||||
* @param {Point} a2 - Point 2 of line A
|
||||
* @param {Point} b1 - Point 1 of line B
|
||||
* @param {Point} b2 - Point 2 of line B
|
||||
* @return {{p:Point, t: number, u:number}|false} the intersection.
|
||||
* The method will return `false` if the lines are (approximately) parallel or undefined,
|
||||
* e.g., if both points of a line have (approximately) the same coordinate.
|
||||
* Otherwise, p is the point of the intersection,
|
||||
* t and u determine where the intersection lies relative to the points of line A and line B respectively.
|
||||
* 0.0 means the intersection is on the first point, 1.0 on the second point.
|
||||
*/
|
||||
function beamIntersection(a1, a2, b1, b2) {
|
||||
// Function to compute the cross-product of two vectors
|
||||
function crossProduct(v1, v2) {
|
||||
return v1.x * v2.y - v1.y * v2.x
|
||||
}
|
||||
|
||||
// Find intersection
|
||||
let x = (iB - iA) / (slopeA - slopeB)
|
||||
let y = slopeA * x + iA
|
||||
// Vector from a1 to a2
|
||||
const r = { x: a2.x - a1.x, y: a2.y - a1.y }
|
||||
// Vector from b1 to b2
|
||||
const s = { x: b2.x - b1.x, y: b2.y - b1.y }
|
||||
|
||||
return new Point(x, y)
|
||||
// Vector from a1 to b1
|
||||
const ab = { x: b1.x - a1.x, y: b1.y - a1.y }
|
||||
|
||||
// Compute the cross-product of r and s
|
||||
const rCrossS = crossProduct(r, s)
|
||||
|
||||
// If the cross-product is close to zero, the lines are parallel or nearly parallel
|
||||
const EPSILON = 1e-10 // small threshold to handle numerical stability
|
||||
if (Math.abs(rCrossS) < EPSILON) {
|
||||
return false // The lines are parallel (or almost parallel), or the points had (almost) the same coordinate
|
||||
}
|
||||
|
||||
// Compute the parameters t and u where the beams intersect
|
||||
const t = crossProduct(ab, s) / rCrossS
|
||||
const u = crossProduct(ab, r) / rCrossS
|
||||
|
||||
// Compute the intersection point using a1 + t * r and return result
|
||||
return {
|
||||
p: new Point(a1.x + t * r.x, a1.y + t * r.y),
|
||||
t: t,
|
||||
u: u,
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -133,12 +161,28 @@ export function beamsIntersect(a1, a2, b1, b2) {
|
|||
* @param {Point} cp1 - Control Point at the start of the curve
|
||||
* @param {Point} cp2 - Control Point at the end of the curve
|
||||
* @param {Point} to - End Point of the curve
|
||||
* @return {Array} intersections - An array of Points at the intersections
|
||||
* @return {false|Point|Array} intersections - false if no intersections, else a singular point or an array of Points at the intersections
|
||||
*/
|
||||
export function beamIntersectsCurve(start, end, from, cp1, cp2, to) {
|
||||
let _start = new Point(start.x + (start.x - end.x) * 1000, start.y + (start.y - end.y) * 1000)
|
||||
let _end = new Point(end.x + (end.x - start.x) * 1000, end.y + (end.y - start.y) * 1000)
|
||||
return lineIntersectsCurve(_start, _end, from, cp1, cp2, to)
|
||||
let intersections = []
|
||||
let bz = new Bezier(
|
||||
{ x: from.x, y: from.y },
|
||||
{ x: cp1.x, y: cp1.y },
|
||||
{ x: cp2.x, y: cp2.y },
|
||||
{ x: to.x, y: to.y }
|
||||
)
|
||||
let line = {
|
||||
p1: { x: start.x, y: start.y },
|
||||
p2: { x: end.x, y: end.y },
|
||||
}
|
||||
for (let t of Bezier.getUtils().roots(bz.points, line)) {
|
||||
let isect = bz.get(t)
|
||||
intersections.push(new Point(isect.x, isect.y))
|
||||
}
|
||||
|
||||
if (intersections.length === 0) return false
|
||||
else if (intersections.length === 1) return intersections[0]
|
||||
else return intersections
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -410,14 +454,29 @@ export function lineIntersectsCircle(c, r, p1, p2, sort = 'x') {
|
|||
* @return {Point} intersection - The Point at the intersection
|
||||
*/
|
||||
export function linesIntersect(a1, a2, b1, b2) {
|
||||
let p = beamsIntersect(a1, a2, b1, b2)
|
||||
if (!p) return false
|
||||
let lenA = a1.dist(a2)
|
||||
let lenB = b1.dist(b2)
|
||||
let lenC = a1.dist(p) + p.dist(a2)
|
||||
let lenD = b1.dist(p) + p.dist(b2)
|
||||
if (Math.round(lenA) == Math.round(lenC) && Math.round(lenB) == Math.round(lenD)) return p
|
||||
else return false
|
||||
const intersection = beamIntersection(a1, a2, b1, b2)
|
||||
if (!intersection) return false
|
||||
const EPSILON = 1e-10
|
||||
if (intersection.t < -EPSILON || intersection.t > 1 + EPSILON) return false // outside of line segment A
|
||||
if (intersection.u < -EPSILON || intersection.u > 1 + EPSILON) return false // outside of line segment B
|
||||
return intersection.p
|
||||
}
|
||||
|
||||
/**
|
||||
* Finds the intersection of a beam and a line segment
|
||||
*
|
||||
* @param {Point} a1 - Point 1 of beam
|
||||
* @param {Point} a2 - Point 2 of beam
|
||||
* @param {Point} b1 - Point 1 of line segment
|
||||
* @param {Point} b2 - Point 2 of line segment
|
||||
* @return {Point} intersection - The Point at the intersection
|
||||
*/
|
||||
export function beamIntersectsLine(a1, a2, b1, b2) {
|
||||
const intersection = beamIntersection(a1, a2, b1, b2)
|
||||
if (!intersection) return false
|
||||
const EPSILON = 1e-10
|
||||
if (intersection.u < -EPSILON || intersection.u > 1 + EPSILON) return false // outside of line segment
|
||||
return intersection.p
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -429,7 +488,7 @@ export function linesIntersect(a1, a2, b1, b2) {
|
|||
* @param {Point} cp1 - Control Point at the start of the curve
|
||||
* @param {Point} cp2 - Control Point at the end of the curve
|
||||
* @param {Point} to - End Point of the curve
|
||||
* @return {Array} intersections - An array of Points at the intersections
|
||||
* @return {false|Point|Array} intersections - false if no intersections, else a singular point or an array of Points at the intersections
|
||||
*/
|
||||
export function lineIntersectsCurve(start, end, from, cp1, cp2, to) {
|
||||
let intersections = []
|
||||
|
|
|
@ -603,6 +603,17 @@ describe('Path', () => {
|
|||
expect(round(intersections[5].y)).to.equal(93.31)
|
||||
})
|
||||
|
||||
it('Should find an intersection with a beam', () => {
|
||||
const test = new Path()
|
||||
.move(new Point(300, 400))
|
||||
.line(new Point(300, 380))
|
||||
.curve(new Point(350, 200), new Point(350, 100), new Point(350, 0))
|
||||
let intersectsBeam = test.intersectsBeam(new Point(0, 370), new Point(100, 370))
|
||||
expect(intersectsBeam.length).to.equal(1)
|
||||
expect(round(intersectsBeam[0].x)).to.equal(302.75)
|
||||
expect(round(intersectsBeam[0].y)).to.equal(370)
|
||||
})
|
||||
|
||||
it('Should throw an error when running path.intersect on an identical path', () => {
|
||||
const test = new Path()
|
||||
expect(() => test.intersects(test)).to.throw()
|
||||
|
|
|
@ -48,6 +48,24 @@ describe('Utils', () => {
|
|||
expect(linesIntersect(a, b, c, d)).to.equal(false)
|
||||
})
|
||||
|
||||
it('Should detect parallel vertical lines', () => {
|
||||
let a = new Point(10, 20.234)
|
||||
let b = new Point(10, 20)
|
||||
let c = new Point(90, 40)
|
||||
let d = new Point(90, 45.123)
|
||||
expect(beamsIntersect(a, b, c, d)).to.equal(false)
|
||||
expect(linesIntersect(a, b, c, d)).to.equal(false)
|
||||
})
|
||||
|
||||
it('Should detect almost parallel vertical lines', () => {
|
||||
let a = new Point(10, 20.234)
|
||||
let b = new Point(10, 20)
|
||||
let c = new Point(360, 40)
|
||||
let d = new Point(360.00000000000006, 45.123)
|
||||
expect(beamsIntersect(a, b, c, d)).to.equal(false)
|
||||
expect(linesIntersect(a, b, c, d)).to.equal(false)
|
||||
})
|
||||
|
||||
it('Should detect vertical lines', () => {
|
||||
let a = new Point(10, 20)
|
||||
let b = new Point(10, 90)
|
||||
|
|
|
@ -17,7 +17,7 @@ for more information.
|
|||
## Signature
|
||||
|
||||
```
|
||||
array|false path.intersects(Path path)
|
||||
array path.intersects(Path path)
|
||||
```
|
||||
|
||||
|
||||
|
|
56
sites/dev/docs/reference/api/path/intersectsbeam/readme.mdx
Normal file
56
sites/dev/docs/reference/api/path/intersectsbeam/readme.mdx
Normal file
|
@ -0,0 +1,56 @@
|
|||
---
|
||||
title: Path.intersectsBeam()
|
||||
---
|
||||
|
||||
The `Path.intersectsBeam()` method returns the Point object(s) where the path
|
||||
intersects with an endless line (beam).
|
||||
|
||||
:::warning
|
||||
|
||||
This method can sometimes fail to find intersections in some curves
|
||||
due to a limitation in an underlying Bézier library.
|
||||
Please see [Bug #3367](https://github.com/freesewing/freesewing/issues/3367)
|
||||
for more information.
|
||||
|
||||
:::
|
||||
|
||||
## Signature
|
||||
|
||||
```js
|
||||
array path.intersectsBeam(Point a, Point b)
|
||||
```
|
||||
|
||||
<Example caption="Example of the Path.intersectsBeam() method">
|
||||
|
||||
```js
|
||||
;({ Point, points, Path, paths, snippets, Snippet, getId, part }) => {
|
||||
points.A = new Point(45, 60)
|
||||
points.B = new Point(10, 30)
|
||||
points.BCp2 = new Point(40, 20)
|
||||
points.C = new Point(90, 30)
|
||||
points.CCp1 = new Point(50, -30)
|
||||
|
||||
points.beamA = new Point(55, 30)
|
||||
points.beamB = new Point(0, 55)
|
||||
|
||||
paths.demo1 = new Path().move(points.A).line(points.B).curve(points.BCp2, points.CCp1, points.C)
|
||||
|
||||
paths.beam = new Path().move(points.beamA).line(points.beamB).addClass('dashed')
|
||||
|
||||
for (let p of paths.demo1.intersectsBeam(points.beamA, points.beamB)) {
|
||||
snippets[getId()] = new Snippet('notch', p)
|
||||
}
|
||||
|
||||
return part
|
||||
}
|
||||
```
|
||||
|
||||
</Example>
|
||||
|
||||
## Notes
|
||||
|
||||
This method works similar to `path.intersectsX(...)` and `path.intersectsY(...)`,
|
||||
but here the intersecting beam doesn't have to be horizontally or vertically.
|
||||
|
||||
If you need intersections with a limited line instead of a beam,
|
||||
use something like `path.intersects(new Path.move(pointA).line(pointB))` instead.
|
|
@ -17,7 +17,7 @@ for more information.
|
|||
## Signature
|
||||
|
||||
```js
|
||||
array|false path.intersectsX(float x)
|
||||
array path.intersectsX(float x)
|
||||
```
|
||||
|
||||
## Example
|
||||
|
|
|
@ -17,7 +17,7 @@ for more information.
|
|||
## Signature
|
||||
|
||||
```js
|
||||
array|false path.intersectsY(float y)
|
||||
array path.intersectsY(float y)
|
||||
```
|
||||
|
||||
## Example
|
||||
|
|
|
@ -0,0 +1,45 @@
|
|||
---
|
||||
title: utils.beamIntersectsLine()
|
||||
---
|
||||
|
||||
The `utils.beamIntersectsLine()` function finds the intersection between an endless
|
||||
line (beam) and a (limited) line segment. Returns a [Point](/reference/api/point) object for the
|
||||
intersection, or `false` if the beam doesn't intersect the line.
|
||||
|
||||
The first two points in the parameter list form the beam, the last two points form the line.
|
||||
|
||||
## Signature
|
||||
|
||||
```js
|
||||
Point | false utils.beamIntersectsLine(
|
||||
Point beamA,
|
||||
Point beamB,
|
||||
Point lineA,
|
||||
Point lineB
|
||||
)
|
||||
```
|
||||
|
||||
## Example
|
||||
|
||||
<Example caption="A Utils.beamIntersectsLine() example">
|
||||
|
||||
```js
|
||||
;({ Point, points, Path, paths, Snippet, snippets, utils, part }) => {
|
||||
points.A = new Point(45, 20)
|
||||
points.B = new Point(60, 15)
|
||||
points.C = new Point(10, 10)
|
||||
points.D = new Point(50, 40)
|
||||
|
||||
paths.AB = new Path().move(points.A).line(points.B).addClass('dotted')
|
||||
paths.CD = new Path().move(points.C).line(points.D)
|
||||
|
||||
snippets.x = new Snippet(
|
||||
'notch',
|
||||
utils.beamIntersectsLine(points.A, points.B, points.C, points.D)
|
||||
)
|
||||
|
||||
return part
|
||||
}
|
||||
```
|
||||
|
||||
</Example>
|
|
@ -19,7 +19,7 @@ Point | false utils.beamsIntersect(
|
|||
|
||||
## Example
|
||||
|
||||
<Example caption="A Utils.beamIntersect() example">
|
||||
<Example caption="A Utils.beamsIntersect() example">
|
||||
```js
|
||||
({ Point, points, Path, paths, Snippet, snippets, utils, part }) => {
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue